(1)右手坐标系
(2)(1,0,0),(1,0,0)
(3)10,-10
错误,正确,错误
|2, 7, 3| = \sqrt{4 + 49 + 9} = \sqrt{62}
2.5(5, 4, 10) = (12.5, 10, 25)
\frac{(3, 4)}{2} = (1.5, 2)
(\frac{5}{13}, \frac{12}{13})
(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})
(10, 9)
(-6, 1, 2)
\sqrt{(10-2)^2 + (13 - 1)^2 + (11 - 1)^2} = \sqrt{308}
(4, 7) \cdot (3, 9) = 12 + 63 = 75
(2, 5, 6) \cdot (3, 1, 2) - 10 = 6 + 5 + 12 - 10 = 13
0.5(-3, 4) \cdot (-2, 5) = 13
(3, -1, 2) \times (-5, 4, 1) = (-9, -13, 7)
(-5, 4, 1) \times (3, -1, 2) = (9, 13, -7)
\vec{a} \cdot \vec{b} = 12
|\vec{a} \times \vec{b}| = 20.784
(1)计算点积,正表示前面,负表示后面
(2)\vec{px} = (10, 6) - (4, 2) = (6, 4),\vec{px} \cdot \vec{v} = -18 + 16 = -2
(3)如果cos\theta > cos\frac{\phi}{2},表示在视角范围内;如果cos\theta < cos\frac{\phi}{2},表示在视角范围外
(4)计算向量长度,与限制值比较
计算\vec{p_1p_2} 和\vec{p_1p_3}的叉乘值,判断 z 分量,负数表示顺时针,正数表示逆时针
\begin{bmatrix} -1 & 11 \\ -2 & 18 \end{bmatrix},\begin{bmatrix} 7 & 48 \\ 10 & 52 \end{bmatrix},\begin{bmatrix} 11 \\ 11 \\ -6 \end{bmatrix}
(1)不是正交矩阵,行之间点积不为 0
(2)正交矩阵
(3)正交矩阵
(1)一样
(2)\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 15 \\ -16 \\ 18 \end{bmatrix},\begin{bmatrix} 3 & 2 & 6 \end{bmatrix}\begin{bmatrix}1 & 0 & 2\\ 0 & 1 & -3 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 24 \end{bmatrix} 不一样
对矩阵进行转置来计算,\begin{bmatrix} 3 & 2 & 6 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -3 & 3 \end{bmatrix} = \begin{bmatrix} 15 & -16 & 18 \end{bmatrix}
(3)一样,原因:对称矩阵